Classification ================== #1. C4.5() Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc. Google Scholar Count in October 2006: 6907 #2. CART() L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth, Belmont, CA, 1984. Google Scholar Count in October 2006: 6078 #3. K Nearest Neighbours (kNN) Hastie, T. and Tibshirani, R. 1996. Discriminant Adaptive Nearest Neighbor Classification. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI). 18, 6 (Jun. 1996), 607-616. DOI= http://dx.doi.org/10.1109/34.506411 Google SCholar Count: 183 #4. 贝叶斯分类器Naive Bayes Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All? Internat. Statist. Rev. 69, 385-398. Google Scholar Count in October 2006: 51 Statistical Learning ============================= #5. 支持向量机(SVM) Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc. Google Scholar Count in October 2006: 6441 #6. EM McLachlan, G. and Peel, D. (2000). Finite Mixture Models. J. Wiley, New York. Google Scholar Count in October 2006: 848 Association Analysis ============================= #7. Apriori Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules. In Proc. of the 20th Int'l Conference on Very Large Databases (VLDB '94), Santiago, Chile, September 1994. http://citeseer.comp.nus.edu.sg/agrawal94fast.html Google Scholar Count in October 2006: 3639 #8. 频繁模式树(FP-Tree) Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. In Proceedings of the 2000 ACM SIGMOD international Conference on Management of Data (Dallas, Texas, United States, May 15 - 18, 2000). SIGMOD '00. ACM Press, New York, NY, 1-12. DOI= http://doi.acm.org/10.1145/342009.335372 Google Scholar Count in October 2006: 1258 Link Mining ==================== #9. PageRank Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual Web search engine. In Proceedings of the Seventh international Conference on World Wide Web (WWW-7) (Brisbane, Australia). P. H. Enslow and A. Ellis, Eds. Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 107-117. DOI= http://dx.doi.org/10.1016/S0169-7552(98)00110-X Google Shcolar Count: 2558 #10. HITS() Kleinberg, J. M. 1998. Authoritative sources in a hyperlinked environment. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, California, United States, January 25 - 27, 1998). Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, 668-677. Google Shcolar Count: 2240 Clustering ============== #11. K-Means() MacQueen, J. B., Some methods for classification and analysis of multivariate observations, in Proc. 5th Berkeley Symp. Mathematical Statistics and Probability, 1967, pp. 281-297. Google Scholar Count in October 2006: 1579 #12. BIRCH() Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: an efficient data clustering method for very large databases. In Proceedings of the 1996 ACM SIGMOD international Conference on Management of Data (Montreal, Quebec, Canada, June 04 - 06, 1996). J. Widom, Ed. SIGMOD '96. ACM Press, New York, NY, 103-114. DOI= http://doi.acm.org/10.1145/233269.233324 Google Scholar Count in October 2006: 853 Bagging and Boosting =============================== #13. AdaBoost Freund, Y. and Schapire, R. E. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139. DOI= http://dx.doi.org/10.1006/jcss.1997.1504 Google Scholar Count in October 2006: 1576 Sequential Patterns ============================= #14. GSP Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns: Generalizations and Performance Improvements. In Proceedings of the 5th international Conference on Extending Database Technology: Advances in Database Technology (March 25 - 29, 1996). P. M. Apers, M. Bouzeghoub, and G. Gardarin, Eds. Lecture Notes In Computer Science, vol. 1057. Springer-Verlag, London, 3-17. Google Scholar Count in October 2006: 596 #15. PrefixSpan J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In Proceedings of the 17th international Conference on Data Engineering (April 02 - 06, 2001). ICDE '01. IEEE Computer Society, Washington, DC. Google Scholar Count in October 2006: 248 Integrated Mining ================= #16. CBA Liu, B., Hsu, W. and Ma, Y. M. Integrating classification and association rule mining. KDD-98, 1998, pp. 80-86. http://citeseer.comp.nus.edu.sg/liu98integrating.html Google Scholar Count in October 2006: 436 Rough Sets ========== #17. Finding reduct Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Norwell, MA, 1992 Google Scholar Count in October 2006: 329 Graph Mining =================== #18. gSpan Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure Pattern Mining. In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM '02) (December 09 - 12, 2002). IEEE Computer Society, Washington, DC. Google Scholar Count in October 2006: 155
原英文地址:http://www.cs.uvm.edu/~icdm/algorithms/CandidateList.shtml
—————————————————————————
【版权申明】
如非注明,本站文章均为 数据小雄 原创,转载请注明出处:数据小雄博客,并附带本文链接,谢谢合作!
本文地址:http://zhangzhengxiong.com/?id=38。
—————————————————————————
流泪
0人
打酱油
0人
开心
2人
鼓掌
0人
恐怖
0人
发表评论
额 本文暂时没人评论 来添加一个吧